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• Basic concepts

• Traditional domain adaptation
– Metric learning
– Subspace representations
– Matching distributions



Basic Concepts



Standard Visual Recognition

Train a classifier on the training data and directly apply it to the test data
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Training data Test data



Domain Shift

A classifier trained on one domain may perform poorly on another domain
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Training data Test data

Source domain Target domain



Semi-supervised vs Unsupervised
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• Semi-supervised: Some labeled target data, but not enough to train from 
scratch

Source data Target data

Fully-labeled A few labels



Semi-supervised vs Unsupervised
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Source data Target data

Fully-labeled

• Unsupervised: No labels for the target data



Single vs Multiple Source Domains
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Source domain Target domain

• Moving towards domain generalization

Source domain 2

Source domain 1



Domain Adaptation: Other Scenarios
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Synthetic (source domain)

Real (target domain)



Domain Adaptation: Other Scenarios
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Domain Adaptation: Other Scenarios
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Satellite 6D pose estimation

Synthetic (source)

Real (target)



Setup/Notation

• Each sample is represented by a feature vector:
– In the traditional methods, e.g., bag of SURF features
– More recently, features extracted by a deep backbone network
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Label: {"#$}$&'(



Domain Shift

• The domain shift is defined as a difference in the distribution of the 
source and target samples
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Domain Shift

• Typically, the literature focuses on the covariate shift case, where

!" #" ≠ !%(#%)
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• But

!" (|#" = !%((|#%)

• The goal of domain adaptation is then often expressed as that of finding a 
transformation + . , such that

!" +(#") = !%(+(#%))



Domain Shift

• Note that other types of shift have been studied. For example:
– Long et al., ICCV 2013

!" #|%" ≠ !'(#|%') (concept shift)
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– Gong et al., ICML 2016

!" #|*(%") ≠ !'(#|*(%'))

– Kouw & Loog, 2018

!" # ≠ !'(#) (prior shift)

• In this part, I will nonetheless focus on the covariate shift problem



Traditional Domain Adaptation



Metric Learning for Domain Adaptation

• Saenko et al., Adapting Visual Category Models to New Domains, ECCV 2010
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• Learning a distance:



Metric Learning for Domain Adaptation

• Semi-supervised domain adaptation: Pairwise constraints based on labels
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• Learning formulation:

• Davis et al., ICML 2007:
– Regularizer invariant to scaling and rotation
– Efficient update based on a single constraint at a time



Metric Learning: Asymmetric Transformations 

• The previous approach assumes:
– Same feature dimensions for both domains
– SPD matrix W
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• This corresponds to a symmetric transformation

• Kulis et al., CVPR 2011 handles the asymmetric case



Metric Learning: Asymmetric Transformations 

• Rely on similarity instead of distance:

20

• The constraints can then be replaced with regularizers of the form:

if the samples have the same label

otherwise

• Replace the logdet regularizer with 

• The formulation can be kernelized



From Semi-supervised to Unsupervised DA

• The previous approaches require some labeled target samples
• The unsupervised scenario assumes no target labels are available

21

Source data Target data

Fully-labeled A few labels



Subspace Representations
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• To model the data in each domain, several works have proposed to rely on 
subspace representations
– This allows one to consider the entire data in one domain as a single entity

• Subspaces lie on Grassmann manifolds
– Notions of Riemannian geometry, such as geodesics can be exploited



Subspace Representations
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• Gopalan et al., ICCV 2011

• Generating intermediate subspaces
– Samples along the geodesic between the source and target subspaces

• Recognition
– Project source and target samples on all subspaces
– PLS on the resulting vector representation



Geodesic Flow Kernel

24

• Gong et al., CVPR 2012

• Instead of sampling, integrate over all subspaces
– Projection over all subspaces generates infinite dimensional vector representations

• Inner product between two such vectors 



Subspace Alignment
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• Fernando et al., ICCV 2013

• Don’t consider intermediate subspaces, align the source and target ones

• Solve

• Closed-form solution



Unsupervised DA: Matching Distributions

• While effective, subspace-based methods indirectly address the domain shift
– Recall that it results from a distribution mismatch

26

• A popular DA approach therefore consists of aligning the distributions



Maximum Mean Discrepancy

• Compare the mean of two samples in Hilbert space
– Gretton et al., JMLR 2012
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Sample Reweighting/Selection

• Assign a weight to each source sample to make the distributions similar
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Sample Reweighting/Selection

• Gretton et al., JRSS 2012: Sample reweighting
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MMD

Bound on the weights

Encourage the weights 
to define a probability 
distribution



Sample Reweighting/Selection

• Gong et al., ICML 2013: Sample selection
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MMD

Binary weights

Keep the same 
proportion of sample 
in each class



Sample Reweighting/Selection

• What happens if the original distributions are very different?
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• Selecting/reweighting samples will not be sufficient to align the distributions



Transformation Learning

• Learn a mapping to a latent space where the distributions are similar
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Transfer Component Analysis (TCA)

• Pan et al., TNN 2011
• Motivation: Learn a nonlinear mapping that minimizes the MMD
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• Would involve learning a kernel matrix, which is ill-constrained



TCA: Simplification

• Relies on a projection of the empirical kernel map to a latent space
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TCA: Simplification

• Yields a new kernel matrix
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• The MMD becomes

• Formulation

• To better constrain the problem, regularize the data variance



TCA Interpretation

• TCA compares the mean of each domain after projection to the latent space
• MMD not truly computed in Hilbert space 
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Domain Invariant Projection (DIP)
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• Baktashmotlagh et al., ICCV 2013
– Learn a latent representation such that the MMD is minimized
– MMD truly makes use of the Hilbert space



Domain Invariant Projection (DIP)

• MMD:
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• With a Gaussian kernel

• Formulation



Comparing Covariances

• Sun et al., AAAI 2016: CORAL
– First de-correlate the source features
– Then re-correlate them with the target correlation
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• Mathematically:

• Note that, as opposed to the means in the MMD, the covariance matrices 
are computed in the original space 



Other Distribution Distances

• f-divergences:
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• In practice, the distributions can be estimated using KDE

• In particular, the KL-divergence:



Hellinger Distance
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• Related to the geodesic distance on the statistical manifold
– The length of a curve is the same under both distances



Statistically Invariant Embedding (SIE)
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• Baktashmotlagh et al., CVPR 2014
– Hellinger distance instead of MMD
– Applied to sample selection and transformation learning



Empirical Evaluation: Dataset

• Introduced by Saenko et al., ECCV 2010
• Complemented with Caltech by Gong et al., CVPR 2012
• 4 domains, 10 classes
• BoW of SURF features
• Decaf features

43



Empirical Evaluation: Results (SURF)
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Empirical Evaluation: Results
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Empirical Evaluation: Results
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Empirical Evaluation: Results
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Empirical Evaluation: Results (Decaf)
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MMD-based Network

• Deep Domain Confusion: Tzeng et al., 2014
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Domain Adversarial Networks

• Ganin & Lempitsky, ICML 2015; Ajakan et al., 2014
– With domain-invariant features, classifying from which domain a sample 

comes should be difficult
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• Shown to optimize a H-divergence between the source and target data



Deep Learning for Domain Adaptation (Office 31)
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Deep

Shallow

DAN



Summary

• Learning transformations to match distributions
– Well-motivated and intuitive
– Effective in practice
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• Subspace-based representations are also powerful
– Subspace alignment is simple and effective

• End-to-end learning has surpassed the traditional approach
– Many ideas used in the past can be and have been translated to deep networks


