

16TH EUROPEAN CONFERENCE ON COMPUTER VISION

WWW.ECCV2020.EU

Domain Adaptation for Visual Applications Part 3: Beyond Classical Domain Adaptation

Tatiana Tommasi Assistant Professor, Polytechnic University of Turin, Italy Affiliated Researcher, Italian Institute of Technology

Outline

- An Overview on several Cross-Domain Learning Settings
 - (annotated) source data
 - (annotated) target data
 - source / target overlap

• Self-Supervision for Cross-Domain Learning

Classical Domain Adaptation

Classical Domain Adaptation

Target (Test)

Annotated Source data

> Multiple Source Domains

One Source

Domain

Annotated **Target** data

Target data **not available** at training time Target data **available** but not annotated

Only Source Model available, (**no source data**)

Single Source Domain Generalization

$$\mathcal{L}_{const} = \frac{1}{2} \|\mathbf{z} - \mathbf{z}^+\|_2^2 + \infty \cdot \mathbf{1} \left\{ \mathbf{y} \neq \mathbf{y}^+ \right\}$$

[Learning to Learn Single Domain Generalization, CVPR 2020]

• Sample in Source Domain

O Augmented Sample

Single Source Domain Generalization

$$\mathcal{L}_{\text{const}} = \frac{1}{2} \|\mathbf{z} - \mathbf{z}^+\|_2^2 + \infty \cdot \mathbf{1} \{\mathbf{y} \neq \mathbf{y}^+\}$$
$$\mathcal{L}_{\text{relax}} = \|\mathbf{x}^+ - V(\mathbf{x}^+)\|^2$$

[Learning to Learn Single Domain Generalization, CVPR 2020]

 \mathcal{L}_{const} $\mathcal{L}_{const} + \mathcal{L}_{relax}$

O Sample in Source Domain

O Augmented Sample

Single Source Domain Generalization

[Learning to Learn Single Domain Generalization, CVPR 2020]

 \mathcal{L}_{const}

 $\mathcal{L}_{const} + \mathcal{L}_{relax}$

• Sample in Source Domain

O Augmented Sample

Zero-Shot Domain Adaptation

source domain: gray scale target domain: RGB : available at training : unavailable at training

[Zero-Shot Deep Domain Adaptation, ECCV 2018]

Zero-Shot Domain Adaptation

[Zero-Shot Deep Domain Adaptation, ECCV 2018]

CNN

sl

Target

L2

Loss

Step 1: simulate target representation

task-irrelevant

dual-domain pairs

[Towards Recognizing Unseen Categories in Unseen Domains, ECCV 2020]

 (y_i)

U

Ú

[Towards Recognizing Unseen Categories in Unseen Domains, ECCV 2020]

$$\phi(a_i, a_j, a_k) = \lambda a_i + (1 - \lambda) (\alpha a_j + (1 - \alpha) a_k)$$

Domain Picking

[Towards Recognizing Unseen Categories in Unseen Domains, ECCV 2020]

$$\phi(a_i, a_j, a_k) = \lambda a_i + (1 - \lambda)(\alpha a_j + (1 - \alpha)a_k)$$

Actual Mixing

Predictive DA

[Multivariate Regression on the Grassmannian for Predicting Novel Domains, CVPR 2016] [AdaGraph: Unifying Predictive and Continuous Domain Adaptation

through Graphs, CVPR 2019]

Predictive DA

[Multivariate Regression on the Grassmannian for Predicting Novel Domains, CVPR 2016] [AdaGraph: Unifying Predictive and Continuous Domain Adaptation

through Graphs, CVPR 2019]

Predictive DA

[Multivariate Regression on the Grassmannian for Predicting Novel Domains, CVPR 2016] [AdaGraph: Unifying Predictive and Continuous Domain Adaptation

through Graphs, CVPR 2019]

Predictive DA

[Multivariate Regression on the Grassmannian for Predicting Novel Domains, CVPR 2016] [AdaGraph: Unifying Predictive and Continuous Domain Adaptation through Graphs, CVPR 2019]

Online DA

[Kitting in the Wild through Online Domain Adaptation, ICRA 2018]

Source-Free DA

[Universal Source-Free Domain Adaptation, CVPR 2020] [Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation, ICML 2020]

Source-Free DA

[Universal Source-Free Domain Adaptation, CVPR 2020]

[Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation, ICML 2020]

Cross Entropy Loss

- (1) Information Maximization Loss It makes the target outputs
 - individually certain (as entropy minimization)
 - globally diverse
 - (2) Target Clustering & Nearest Centroid Classifier

- gradients are **beneficial** to the target domain
- measure how well the target features can be clustered (cluster gap statistics gain)

- increase the weight of those nodes whose gradients are **beneficial** to the target domain
- measure how well the target features can be clustered (cluster gap statistics gain)

- increase the weight of those nodes whose gradients are **beneficial** to the target domain
- measure how well the target features can be clustered (cluster gap statistics gain)

- convergence rates
- increase the weight of those nodes whose gradients are **beneficial** to the target domain
- measure how well the target features can be **clustered** (cluster gap statistics gain)

- the models on different nodes have different convergence rates
- increase the weight of those nodes whose gradients are **beneficial** to the target domain
- measure how well the target features can be clustered (cluster gap statistics gain)

- the models on different nodes have different convergence rates
- increase the weight of those nodes whose gradients are **beneficial** to the target domain
- measure how well the target features can be clustered (cluster gap statistics gain)

Partial DA

Partial DA

Partial DA

Partial DA

[Partial Adversarial Domain Adaptation, ECCV 2018]
[Learning to transfer examples for partial domain adaptation, CVPR 2019]
[A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation, ECCV 2020]

• Entropy-weighted adversarial domain discriminator (e-DANN)

- Entropy-weighted adversarial domain discriminator (e-DANN)
- Borrow a fraction of the source sample per class and consider them as target

Partial DA

- Entropy-weighted adversarial domain discriminator (e-DANN)
- Borrow a fraction of the source sample per class and consider them as target
- Encourage uniform and low prediction scores for incorrect classes of the source

Open-Set DA

[Open Set Domain Adaptation by Backpropagation, ECCV 2018]

[Separate to Adapt: Open Set Domain Adaptation via Progressive Separation, CVPR 2019]

Open-Set DA

[Open Set Domain Adaptation by Backpropagation, ECCV 2018]

[Separate to Adapt: Open Set Domain Adaptation via Progressive Separation, CVPR 2019]

Open-Set DA

[Open Set Domain Adaptation by Backpropagation, ECCV 2018]

[Separate to Adapt: Open Set Domain Adaptation via Progressive Separation, CVPR 2019]

Open-Set DA

[Open Set Domain Adaptation by Backpropagation, ECCV 2018]

[Separate to Adapt: Open Set Domain Adaptation via Progressive Separation, CVPR 2019]

Open-Set DA

[Open Set Domain Adaptation by Backpropagation, ECCV 2018]

[Separate to Adapt: Open Set Domain Adaptation via Progressive Separation, CVPR 2019]

Domain Adaptation

2018]

 $\mathbf{X}_{\mathbf{S}}$

 $\mathbf{x_t}$

Solve Jigsaw Puzzles

- Decompose an image in patches
- Shuffle them = remove their spatial co-location
- Ask a network to recompose the original image

Self-Supervised Learning

[Unsupervised learning of visual representations by solving jigsaw puzzles, CVPR 2016]

Recognize Image Orientation

Rotate the image = remove the original orientation
Ask a network to predict the rotation angle

Self-Supervised Learning

[Unsupervised Representation Learning by Predicting Image Rotations, ICLR 2018]

Self-Supervised Learning

Self-Supervised Learning

Ex. 1: Inpainting (remove patch and then predict it)

Ex. 3: Colorization (predict color given intensity)

[Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics, CVPR 2020] [Unsupervised learning of visual representations by solving jigsaw puzzles, CVPR 2016] [Unsupervised representation learning by predicting image rotations, ICLR 2018] [Colorization as a proxy task for visual understanding, CVPR 2017] [Self-supervised feature learning by learning to spot artifacts, CVPR 2018] [Colorization as a Proxy Task for Visual Understanding, CVPR 2017] [Self-Supervised Feature Learning by Learning to Spot Artifacts, CVPR 2018]

PACS	art_paint.	cartoon	sketches	photo	Avg.						
Alexnet											
DeepAll	63.30	63.13	54.07	87.70	67.05						
TF	62.86	66.97	57.51	89.50	69.21						
DeepAll	64.44	72.07	58.07	87.50	70.52						
D-SAM	63.87	70.70	64.66	85.55	71.20						
DeepAll	63.40	66.10	56.60	88.50	68.70						
Epi-FCR	64.70	72.30	65.00	86.10	72.00						
DeepAll	64.91	64.28	53.08	86.67	67.24						
MLDG	66.23	66.88	58.96	88.00	70.01						
DeepAll	67.21	66.12	55.32	88.47	69.28						
MetaReg	69.82	70.35	59.26	91.07	72.62						
DeepAll	63.30	63.10	54.00	87.70	67.03						
PAR	68.70	70.50	64.60	90.40	73.54						
DeepAll	68.09	70.23	61.80	88.86	72.25						
MMLD	66.99	70.64	67.78	89.35	73.69						
DeepAll	66.50	69.65	61.42	89.68	71.81±0.26						
Jigsaw	67.76	70.79	64.01	89.64	73.05 ± 0.20						
Rotation	69.43	69.40	65.20	89.17	73.30±0.47						
ligsaw+Rotation	69.70	71.00	66.00	89.60	74.08 ± 0.32						

[Domain Generalization by Solving Jigsaw Puzzles, CVPR 2019] [Self-Supervised Learning Across Domains, ArXiv 2020] [Deeper, Broader and Artier Domain Generalization, ICCV 2017]

PACS	art_paint.	cartoon	sketches	photo	Avg.					
Alexnet										
DeepAll	63.30	63.13	54.07	87.70	67.05					
TF	62.86	66.97	57.51	89.50	69.21					
DeepAll	64.44	72.07	58.07	87.50	70.52					
D-SAM	63.87	70.70	64.66	85.55	71.20					
DeepAll	63.40	66.10	56.60	88.50	68.70					
Epi-FCR	64.70	72.30	65.00	86.10	72.00					
DeepAll	64.91	64.28	53.08	86.67	67.24					
MLDG	66.23	66.88	58.96	88.00	70.01					
DeepAll	67.21	66.12	55.32	88.47	69.28					
MetaReg	69.82	70.35	59.26	91.07	72.62					
DeepAll	63.30	63.10	54.00	87.70	67.03					
PAR	68.70	70.50	64.60	90.40	73.54					
DeepAll	68.09	70.23	61.80	88.86	72.25					
MMLD	66.99	70.64	67.78	89.35	73.69					
DeepAll	66.50	69.65	61.42	89.68	71.81 ± 0.20					
Jigsaw	67.76	70.79	64.01	89.64	73.05±0.20					
Rotation	69.43	69.40	65.20	89.17	73.30±0.4					
Jigsaw+Rotation	69.70	71.00	66.00	89.60	74.08 ± 0.32					

[Domain Generalization by Solving Jigsaw Puzzles, CVPR 2019] [Self-Supervised Learning Across Domains, ArXiv 2020] [Deeper, Broader and Artier Domain Generalization, ICCV 2017]

Rotation 🗸

Rotation X

Rotation 🗸

Rotation X

Self-Supervision + Domain Adaptation

Self-Supervision + Domain Adaptation

PACS-DA	art_paint.	cartoon	sketches	photo	Avg.								
Resnet-18													
DeepAll	74.70	72.40	60.10	92.90	75.03								
Dial	87.30	85.50	66.80	97.00	84.15								
DDiscovery	87.70	86.90	69.60	97.00	85.30								
DeepAll	76.17	73.58	55.65	96.07	75.37±0.42								
HAFN	84.95	79.64	64.24	97.70	$81.63 {\pm} 0.50$								
SAFN	86.78	82.72	60.26	98.26	82.01±0.32								
SAFN+ENT	89.22	87.39	60.02	98.14	83.69±0.17								
DeepAll	77.83	74.26	65.81	95.71	78.40 ± 0.28								
Jigsaw $_{\alpha_s=\alpha_t=0.7}$	84.49	82.07	79.86	97.98	86.10±0.26								
Rotation $_{\alpha_s=\alpha_t=0.8}$	89.97	82.60	82.00	98.07	88.16 ± 0.51								
Jigsaw+Rotation	90.87	82.77	83.80	98.37	88.95±0.38								

[Domain Generalization by Solving Jigsaw Puzzles, CVPR 2019] [Self-Supervised Learning Across Domains, ArXiv 2020] [Deeper, Broader and Artier Domain Generalization, ICCV 2017]

Self-Supervision + 3D Domain Adaptation

[Self-Supervision for 3D Real-World Challenges, TASK-CV Workshop ECCV 2020]

Self-Supervision + Open-Set DA

[On the Effectiveness of Image Rotation for Open Set Domain Adaptation, ECCV 2020]

Stage I - Known/Unknown Separation

▲ Known ○ Source

Stage I - Known/Unknown Separation

Multi-Rotation Classifier

class labels

 $(4 \times |\mathcal{C}_s|)$

∆ Known

O Source

Stage I - Known/Unknown Separation

 \mathcal{D}_t

Normality score

 R_1

 \mathcal{D}_t^{unk}

 \mathcal{D}_{t}^{knw}

Normality Score

Score T = $[\underline{A^{0}} + \underline{A^{90}} + \underline{A^{180}} + \underline{A^{270}}, \underline{B^{0}} + \underline{B^{90}} + \underline{B^{180}} + \underline{B^{270}}, \underline{C^{0}} + \underline{C^{90}} + \underline{C^{180}} + \underline{C^{270}}]$

(The evaluation is done for each Target sample)

For one sample T

 \mathcal{D}_t

Normality score

 R_1

 \mathcal{D}_t^{unk}

 \mathcal{D}_{t}^{knw}

Normality Score

Score T = $[\underline{A^0} + \underline{A^{90}} + \underline{A^{180}} + \underline{A^{270}}, \underline{B^0} + \underline{B^{90}} + \underline{B^{180}} + \underline{B^{270}}, \underline{C^0} + \underline{C^{90}} + \underline{C^{180}} + \underline{C^{270}}]$

Entropy Score T = mean(Entropy(α)+Entropy(β)+Entropy(γ)+Entropy(δ))

(The evaluation is done for each Target sample)

For one sample T

 \mathcal{D}_t

Normality score

 R_1

 \mathcal{D}_t^{unk}

 \mathcal{D}_{t}^{knw}

For one sample T

Normality Score

Score T = $[\underline{A^{0}} + \underline{A^{90}} + \underline{A^{180}} + \underline{A^{270}}, \underline{B^{0}} + \underline{B^{90}} + \underline{B^{180}} + \underline{B^{270}}, \underline{C^{0}} + \underline{C^{90}} + \underline{C^{180}} + \underline{C^{270}}]$

Entropy Score T = mean(Entropy(α)+Entropy(β)+Entropy(γ)+Entropy(δ))

Normality Score T = max{ max_{A.B.C} (Score T), (1-Entropy Score T)}

Normality Score

The **Normality Score** gives the probability that each Target sample is from a **Known Class**.

 $egin{cases} oldsymbol{x}^t \in \mathcal{D}_t^{knw} & ext{if} \quad \mathcal{N}(oldsymbol{x}^t) > ar{\mathcal{N}} \ oldsymbol{x}^t \in \mathcal{D}_t^{unk} & ext{if} \quad \mathcal{N}(oldsymbol{x}^t) < ar{\mathcal{N}} \end{cases}$

$$\bar{\mathcal{N}} = \frac{1}{N_t} \sum_{j=1}^{N_t} \mathcal{N}_j$$

The Threshold IS NOT an hyperparameter.

Stage II - Domain Alignment

[On the Effectiveness of Image Rotation for Open Set Domain Adaptation, ECCV 2020]

Stage II - Domain Alignment

 $j \in \mathcal{D}_t^{knw}$

New Open-Set DA Metrics

Number of Known Classes

 $\times (OS^*)$ $\frac{1}{|\mathcal{C}_s|+1} \times UNK$

Measure of the overall performance

Class accuracy over the **Known Classes**

Class accuracy over the **Unknown Class**

 $HOS = 2 \frac{OS^* \times UNK}{OS^* + UNK}$

Harmonic mean of **OS*** and **UNK**

It provides a high score only if the algorithm performs well both on known and on unknown samples, independently of |Cs|.

Results on Office-Home Dataset E 23-28 AUG S & F e i part the con-Clipa Product WARE 20 () Real World Glasses Hammer Spoon Sint Bike Kettle TV Keyboard Red

25 Known Classes **40 Unknown** Classes

	Office-Home																		
	Р	$r \rightarrow R$	łw	P	$r \rightarrow 0$	$\rightarrow Cl$ $Pr \rightarrow Ar$		$\mathrm{Ar} ightarrow \mathrm{Pr}$		$Ar \rightarrow Rw$		$Ar \rightarrow Cl$							
	OS^*	UNK	HOS	OS*	UNK	HOS	OS*	UNK	HOS	OS*	UNK	HOS	OS^*	UNK	HOS	OS^*	UNK	HOS	
STA _{sum} [24]	78.1	63.3	69.7	44.7	71.5	55.0	55.4	73.7	63.1	68.7	59.7	63.7	81.1	50.5	62.1	50.8	63.4	56.3	
SIA_{max}	76.2	64.3	69.5	44.2	67.1	53.2	54.2	72.4	61.9	68.0	48.4	54.0	78.6	60.4	68.3	46.0	72.3	55.8	
OSBP [33]	76.2	71.7	73.9	44.5	66.3	53.2	59.1	68.1	63.2	71.8	59.8	65.2	79.3	67.5	72.9	50.2	61.1	55.1	
UAN [45]	84.0	0.1	0.2	59.1	0.0	0.0	73.7	0.0	0.0	81.1	0.0	0.0	88.2	0.1	0.2	62.4	0.0	0.0	
ROS	70.8	78.4	74.4	46.5	71.2	56.3	57.3	64.3	60.6	68.4	70.3	69.3	75.8	77.2	76.5	50.6	74.1	60.1	
Rw	$\rightarrow \mathrm{Ar}$	R	$kw \rightarrow 1$	Pr	R	$w \rightarrow 0$	Cl	C	$l \to R$	w	($Cl \rightarrow A$	r	($Cl \rightarrow P$	r	10	Ay	g.
OS* UN	K HOS	OS*	UNK	HOS	OS*	UNK	HOS	OS*	UNK	HOS	OS*	UNK	HOS	OS*	UNK	HOS	OS^*	UNK	HOS
STA _{sum} 67.9 62	.3 65.0	77.9	58.0	66.4	51.4	57.9	54.2	69.8	63.2	66.3	53.0	63.9	57.9	61.4	63.5	62.5	63.4	62 <mark>.</mark> 6	61.9 ± 2.1
STA_{max} 67.5 66	.7 67.1	77.1	55.4	64.5	49.9	61.1	54.5	67.0	66.7	66.8	51.4	65.0	57.4	61.8	59.1	60.4	61.8	63.3	$61.1{\pm}0.3$
OSBP 66.1 67	.3 66.7	76.3	68.6	72.3	48.0	63.0	54.5	72	69.2	70.6	59.4	70.3	64.3	67.0	62.7	64.7	64.1	66.3	$64.7{\pm}0.2$
UAN 77.5 0.	1 0.2	85.0	0.1	0.1	66.2	0.0	0.0	80.6	0.1	0.2	70.5	0.0	0.0	74.0	0.1	0.2	75.2	0.0	$0.1{\pm}0.0$
ROS 67 70	.8 68.8	72	80	75.7	51.5	73	60.4	65.3	72.2	68.6	53.6	65.5	58.9	59.8	71.6	65.2	61.6	72.4	$66.2{\pm 0.3}$

[Deep Hashing Network for Unsupervised Domain Adaptation, CVPR 2017]

...with less known classes

Self-Supervision + One-Shot Unsupervised Cross-Domain Detection

TRAINING

Cross-Domain Object Detection

Wait to collect feeds

[A domain adaptive representation learning paradigm for object detection, CVPR 2019]

[One-Shot Unsupervised Cross-Domain Detection, ECCV2020]

1. start from FasterCNN

[One-Shot Unsupervised Cross-Domain Detection, ECCV2020]

OSHOT

- 1. start from FasterCNN
- 2. add a self-supervised task: rotation recognition

 $\operatorname{argmin}_{\theta_f, \theta_d, \theta_r} \sum_{i=1}^{N} \mathcal{L}_d(G_d(G_f(x_i^s)), y_i^s) + \lambda \sum_{j=1}^{M} \mathcal{L}_r(G_r(G_f(R(x^s)_j)), q_j^s))$

[One-Shot Unsupervised Cross-Domain Detection, ECCV2020]

OSHOT

- 1. start from FasterCNN
- 2. add a self-supervised task: rotation recognition
- 3. no need to further access the source

[One-Shot Unsupervised Cross-Domain Detection, ECCV2020]

OSHOT

- 1. start from FasterCNN
- 2. add a self-supervised task: rotation recognition
- 3. no need to further access the source
- 4. sample-guided self-supervised fine-tuning

[One-Shot Unsupervised Cross-Domain Detection, ECCV2020]

Adapting to a stream of Social Images

[One-Shot Unsupervised Cross-Domain Detection, ECCV2020]

					Bicycle:
One-S	Shot Tar	rget			Person:
Method	person	bicycle	mAP		
FRCNN	67.7	56.6	62.1		
OSHOT $(\gamma = 0)$	72.1	52.8	62.4		
OSHOT $(\gamma = 30)$	69.4	59.4	64.4	0.52 0.52	0.98
Fu	ll Target				
DivMatch [28]	63.7	51.7	57.7		
SW [42]	63.2	44.3	53.7		
				DivMatch	OSHOT

[28] [Diversify and match: A domain adaptive representation learning paradigm for object detection, CVPR 2019][42] [Saito et al: Strong-weak distribution alignment for adaptive object detection, CVPR 2019]

[One-Shot Unsupervised Cross-Domain Detection, ECCV2020]

(a) $VOC \rightarrow Clipart$

									One-	Shot	Target										
Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	$\mathbf{t}\mathbf{v}$	mAF
FRCNN	18.5	43.3	20.4	13.3	21.0	47.8	29.0	16.9	28.8	12.5	19.5	17.1	23.8	40.6	34.9	34.7	9.1	18.3	40.2	38.0	26.4
OSHOT $(\gamma = 0)$	23.1	55.3	22.7	21.4	26.8	53.3	28.9	4.6	31.4	9.2	27.8	9.6	30.9	47.0	38.2	35.2	11.1	20.4	36.0	33.6	28.3
OSHOT $(\gamma = 10)$	25.4	61.6	23.8	21.1	31.3	55.1	31.6	5.3	34.0	10.1	28.8	7.3	33.1	59.9	44.2	38.8	15.9	19.1	39.5	33.9	31.0
OSHOT $(\gamma = 30)$	25.4	56.0	24.7	25.3	36.7	58.0	34.4	5.9	34.9	10.3	29.2	11.8	46.9	70.9	52.9	41.5	21.1	21.0	38.5	31.8	33.9
									Ten-S	Shot '	Target										
DivMatch [28]	19.5	57.2	17.0	23.8	14.4	25.4	29.4	2.7	35.0	8.4	22.9	14.2	30.0	55.6	50.8	30.2	1.9	12.3	37.8	37.2	26.3
SW [42]	21.5	39.9	21.7	20.5	32.7	34.1	25.1	8.5	33.2	10.9	15.2	3.4	32.2	56.9	46.5	35.4	14.7	15.2	29.2	32.0	26.4

(b) $VOC \rightarrow Comic$

	O	ne-Sh	ot Ta	arget			
Method	bike	bird	car	cat	dog	person	mAP
FRCNN	25.2	10.0	21.1	14.1	11.0	27.1	18.1
OSHOT $(\gamma = 0)$	26.9	11.6	22.7	9.1	14.2	28.3	18.8
OSHOT $(\gamma = 10)$	35.5	11.7	25.1	9.1	15.8	34.5	22.0
OSHOT $(\gamma = 30)$	35.2	14.4	30.0	14.8	20.0	46.7	26.9
	Te	e n-Sh	ot Ta	rget			
DivMatch [28]	27.1	12.3	26.2	11.5	13.8	34.0	20.8
SW[42]	21.2	14.8	18.7	12.4	14.9	43.9	21.0
22							

(c) VOC \rightarrow Watercolor

One-Shot Target											
Method	bike	bird	car	cat	dog	person	mAP				
FRCNN	62.5	39.7	43.4	31.9	26.7	52.4	42.8				
OSHOT $(\gamma = 0)$	70.2	46.7	45.5	31.2	27.2	55.7	46.1				
OSHOT $(\gamma = 10)$	70.2	46.7	48.1	30.9	32.3	59.9	48.0				
OSHOT $(\gamma = 30)$	77.1	44.7	52.4	37.3	37.0	63.3	52.0				
Ten-Shot Target											
DivMatch [28]	64.6	44.1	44.6	34.1	24.9	60.0	45.4				
SW [42]	66.3	41.1	41.1	30.5	20.5	52.3	42.0				

[28] [Diversify and match: A domain adaptive representation learning paradigm for object detection, CVPR 2019][42] [Saito et al: Strong-weak distribution alignment for adaptive object detection, CVPR 2019]

Thanks for your attention

Domain Adaptation for Visual Applications Part 3: Beyond Classical Domain Adaptation

Tatiana Tommasi tatiana.tommasi@polito.it

