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Domain adaptation (DA)

Leveraging labeled source domain, to learn a model for the target domain.
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Example scenarios
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How to exploit deep models?

Shallow methods using deep features
I use the deep model as feature extractor
I apply any shallow DA method using these features

Using fine-tuned deep architectures
I fine-tune the deep model on the source
I apply the fine-tuned model on the target

Shallow methods using fine-tuned deep features
I fine-tune the deep model on the source
I use the fine-tuned model as feature extractor
I apply any shallow DA method using these features

Deep DA models
I specific deep architectures tailored for domain adaptation
I often initialized with a deep model fine-tuned on the source
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Classical Shallow DA Methods

I Any pre-computed (vectorial) image representation
I Classifier: e.g. SVM, KNN or MLP
I Domain alignment: e.g. by minimizing the distribution mismatch
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Shallow methods with deep features

Deep features are more abstract, already decreases the domain bias.

Pre-trained image classification models
I Activations layers of the deep CNN model, Donuahe+@ICML’14.

Deep image representations learning
I Trained with ranking or contrastive losses
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Fine-tuning the model on the source
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Fine-tuning the model on the source

I Fine-tuning deeper is better than finetuning only the last layers
I How deep we need to fine-tune the model depends on the domain gap
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Deep versus Shallow models

Shallow models:
I acts on pre-extracted (deep)

image representations
I learns independently or jointly the

latent space and the classifiers

Deep models:
I acts directly on the images
I learns image representation, domain

bias and the classifier all end-to-end
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Deep DA model versus deep features
DeepCORAL vs CORAL, Sun+@TASK-CV’16

I Shallow model improves little over directly using deep feature.
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Deep DA model versus deep features
Discrepancy-based deep vs shallow networks, Csurka+@TASK-CV’17

I Fine-tuning the deep model on the source outperforms the shallow model.
I Shallow with fine-tuned deep features is close to deep model (the best).

@2020 NAVER LABS. All rights reserved. 13



To summarize

Shallow models with deep features
I simple and low cost solutions
I same architecture can be applied to any vectorial representation

Tailored deep DA models
I can adjust the feature representation to the problem
I if appropriately trained they often outperform the shallow methods

Shallow methods using fine-tuned deep features
I combines the strength of deep learning and domain adaptation
I fine-tuning can be done in advance, before seeing the target
I no need for new complex architecture
I close to results obtained with the adapted DA model
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Discriminative models

I Siamese network, one source and one target stream

• Both stream initialised with the pretrained-model on the source
I Classification (cross-entropy) loss on the source

I Domain alignment:
• minimizing the distribution discrepancy
• adversarial domain confusion
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Minimizing feature distribution discrepancy

I Kernelized MMD loss, DAN (Long+@ICML’15)

MMD(S,T ) =
∑L

l=1 ‖E(φ(M l
S))− E(φ(M l

T ))‖2

where φ is a kernel projection and E(X) = 1
|X |
∑

x∈X is the empirical expectation.

I Weighted discrepency, WDAN (Yan+@CVPR’17)
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Alternative discrepancy losses

I Central Moment Discrepency, CMD (Zellinger+@ICLR’17)

CMD(S,T ) = ‖E(MS)− E(MT )‖2 +
∑∞

k=2
1

|b−a|k ‖Ck (MS)− Ck (MT )‖

where Ck (X) = E((x − E(X))k ) is the k th order sample central moment.

I Wasserstein Distance: WGRL (Shen+@AAAI’18), NWD (Balaji+@ICCV’19)

WD(S,T ) = sup‖φ‖L≤1

(
EPS

[
φ(MS(xS))

]
− EPT

[
φ(MT (xT ))

])
where ‖ · ‖L is the Lipschitz semi-norm, PS and PT are marginal distributions.

I Deep correlation alignement, DeepCORAL (Sun+@TASK-CV’16)

CORAL(S,T ) = 1
4d2 ‖Cov(MS))− Cov(MT ))‖2

F
where Cov(X) is the data covariance of X .
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Adversarial learning

Image: Courtesy to Richard Gall.

I Generative adversarial nets (GAN), Goodfellow+@NIPS’14
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Domain adversarial training
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Increase domain confusion

Image: Courtesy to Judy Hoffman.

I Adversarial (GAN) loss, ADDA (Tzeng+@CVPR’17)

max
D
{Ex∼pS (x)[log D(MS(x))] + Ex∼pT (x)[log(1− D(MT (x))]}

max
MT
{Ex∼pT (x)[log D(MT (x))]}

I Deep domain confusion, DDC (Tzeng+@ARXIV’14)

I Jensen-Shannon divergence (by GAN), GAM (Huang+@ECCV’18)
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Gradient reversal layers

I RevGrad (Ganin+@JMLR’16), MADA (Pei+@AAAI’18), SimNet
(Pinhero+@CVPR’18)

min
MS ,MT

max
D

V (D,MS ,MT ) = Ex∼pS (x)[log D(MS(x))]Ex∼pT (x)[log(1− D(MT (x)))]
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Experimental comparisons

I Adversarial losses (ADDA, RevGrad, GAM) performs in general better than
feature discrepency minimization (DAN, DeepCORAL).
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Target network parameter adaptation

I Linear global transformations, BSW (Rozantsev+@PAMI’18)

rw (θl
S , θ

l
T ) = exp

(
‖alθ

l
S + bl − θl

T ‖
2)− 1

where al and bl are scalars learned during the training.
I Residual parameter transfer, RPT (Rozantsev+@CVPR’18)

Θl
t − θl

S = Bl
1σ
(
(Al

1θ
l
SAl

2 + Dl )Bl
2
)

where Al
1,A

l
2,B

l
1,D

l
2,D

l are transformation parameters at layer l .
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Target network parameter adaptation

I Domain adaptive multi-branch network, DAMNet
(Bermúdez-Chacón+@ICLR’19)

x l =
∑

k al
kθ

l
k (x l−1)

where al
k are the trainable activation weights of the gates.
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Experimental comparisons

I Best strategy seems to be the gated multi-branch network (DAMNet)
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Adapting the batch

I Domain specific batch normalization, AutoDial (Carlucci+@ICCV’17), AdaBN
(Li+@PR’18), DSBN (Chang+@CVPR’19)

I Batch Nuclear-norm Maximization, BNM (Cui+@CVPR’20)
I Batch Whitening, DWT (Roy+@CVPR’19)
I Learning batch re-weighting with mass shift, JD-BW (Binkowski+@ICCV’19)
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Experimental comparisons

I Adapting batch normalization for the target helps (DSBN, BNM).
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Transfer domain style

Paired image-to-image style transfer as preprocessing
I Csurka+@TASKCV’17, Thomas+@ACCV’19, Jackson+@CVPR-WS’19

Unpaired image-to-image style transfer learning
I I2I (Zhu+@ICCV’17), I2IAd (Murez+@CVPR’18)
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Transfer domain style with GAN

Single GAN
I PLDT (Yoo+@ECCV’16), PixelDA (Bousmalis+@CVPR’17), DTN

(Taigman+@ICLR’17), GenToAdapt (Sankaranarayanan+@CVPR’18)

Combine several GANs
I CoGAN (Liu+@NIPS’16), UNIT (Liu+@NIPS’17), DupGAN (Hu+@CVPR’18)

Align images (CycleGAN) and image representations
I CyCADA (Hoffman+@ICML’18), DRIT (Lee+@ECCV’18), ContrAN

(Kang+@CVPR’19)
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Encoder-decoder based models

Shared encoder-decoder
I sMDA, Chen+@ICML’12, TLDA, Zhuang+@IJCAI’15

Domain specific encoding and/or decoding
I DRCN, Ghifary+@ECCV’16, DSN, Bousmalis+@NIPS’16
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Experimental comparisons

I Adversarial I2I transformation performs better than unsupervised
encoder-decoder based reconstruction (DSN, DRCN)

I Best results obtained when both the images and their representation are aligned
(I2IAd, CyCADA, DRIT)
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Consistency between multiple source

Diversify source classifier
I MCD (Saito+@CVPR’19), ADR (Saito+@ICLR’18), SWD (Lee+@CVPR’19),

STAR (Lu+@CVPR’20)
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Cyclic consistency

I Predict source from predicted target, LTR (Sener+@NIPS’16)
I Predict from traget-like source image, SBADA-GAN (Russo+@ARXIV’17)
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Experimental comparisons

I Significant improvement over the corresponding baseline methods.
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Deep optimal transport

Source class information guides the optimal transport
I DeepJDOT (Damodaran+@ECCV’16), RWOT (Xu+@CVPR’20)
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Joint feature and score distributions

I Joint distribution alignment, JAN (Long+@ICML’17)
I Adversarial joint adaptation, JAN-A (Long+@NIPS’18)
I Conditional domain adversarial network, CDAN (Long+@NIPS’18)
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Experimental comparisons

I Best overall CDAN (Long+@NIPS’18) and DeepJDOT (Damodaran+@ECCV’16)
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Target score distribution entropy

Minimize the entropy of the target predictions (MinEnt)
I AutoDial (Carlucci+@ICCV’17), ATT (Saito+@ICML’17), SBADA-GAN

(Russo+@ARXIV’17), DTA (Lee+@ICCV’19), RCA (Cicek+@ICCV’19)∑
xT
∑

y∈C p(y |xT ) log p(y |xT )

Min-Entropy Consensus (MEC)
I DWT-MEC (Roy+@CVPR’19)

− 1
2
∑

xT maxy∈C
(
log p(y |xT

1 ) + log p(y |xT
2 )
)

where xT
1 and xT

2 are two perturbed versions of xT .

Adversarial, Min-Max Entropy (MME)
I MME (Saito+@CVPR’19)

θ∗F = argminθF
+λH and θ∗C = argminθC

−λH
where H is the entropy, and θF , θC are the parameters of the feature extractor and
classifier respectively.
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Experimental comparisons

I MEC and MME seems to be better than using simply MinEnt.
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Teacher-student paradigm

Mean-teacher of data augmented ensemble classifier
I SelfEns (French+@ICLR’18), DWT (Roy+@CVPR’19)

Refine student classifier’s decision-boundary with a teacher
I DIRT-T (Shu+@ICLR’18)

Cluster alignment with a teacher
I CAT (Deng, +@ICCV’19)
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Experimental comparisons

I Adding CAT improves the corresponding model baseline model.
I Mean Teacher of ensemble classifier performs the best.
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Curriculum/Self-learning

Easy-to-hard sample strategy (ETHS)
I PFAN (Chen+@CVPR’19)

Select highly confident and domain uninformative examples
I iCAN (Zhang+@CVPR’18)

Curriculum based dropout discriminator
I CD3A (Kurmi, +@BMVC’19)

Contrastive intra and inter-class domain discrepancy optimization
I ContrAN (Kang+@CVPR’19)
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Experimental comparisons

I Easy-to-hard sample strategy (PFAN) seems to be the best on object recognition.
I Performs less well as the ensemble learning (SelfEns, DWT) on digit recognition.
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To summarize

Winning strategies:
I Adversarial adaptation vs discriminative (CDAN, GAM)
I GAN (CyCADA, DRIT) better vs encoder-decoder
I Exploit score distributions to guide feature alignment (MCD, RWOT, DWT)
I Curriculum/Self-learning using pseudo-labels (PFAN, iCAN)

The results are to be taken cautiously as
I The results come from various papers
I Not clear how the hyperparameters for each model were selected
I Not always clear how comparable the models (e.g. diff architecture)

@2020 NAVER LABS. All rights reserved. 45



Best result on object recognition sets

Best results are often complex models which in general
I acts mainly on the score prediction level
I exploit target prediction uncertainty
I and has some specific ingredient
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Best result on object recognition sets

I Contrastive discrepancy adaptation, ContrAN (Kang+@CVPR’19)
I Uncertainty based attention, CADA (Kurmi+@CVPR’19)
I Gradually vanishing bridges, GVB-GD (Cui+@CVPR’20)
I Weighted optimal transport, RWOT (Xu+@CVPR’20)

@2020 NAVER LABS. All rights reserved. 47



Outline

1. Motivation

2. Domain adaptation in Deep Learning Era

3. Deep Domain Adaptation Methods

4. Beyond image classification

@2020 NAVER LABS. All rights reserved. 48



DeepDA becoming extremely popular in CV

Many method proposed for:
I Semantic segmentation
I Person Re-ID
I Object detection

But recent DA methods were also proposed for:
I Pose/action recognition
I Depth estimation
I Low level image enhancement
I Control in robotics
I 3D/Visual localization
I Medical imaging
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Image Segmentation

From Synthetic to real data
I Easy to obtain pixel level annotation
I Poor labeling due to domain shift
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Segmentation model adaptation

I Transferring label statistics, FCN-WLD (Hoffman+@CORR’16)
I Backpropagating contrastive loss, CLSDA (Zhu+@ECCV’18)
I Multilevel Adversarial Learning, AdaSegNet (Tsai+@CVPR’18)
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Appearance adaptation

I Paired style transfer, FCAN (Zhang+@CVPR’18)
I GAN based (unpaired), GenToAdapt (Sankaranarayanan+@CVPR’18)
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Cyclic I2I transfer

I Segmentation consistency, CyCADA (Hoffman+@ICML’18)
I Domain agnostic latent space, I2IT (Murez+@CVPR’18)
I Dual channel-wise feature alignment, DCAN (Wu+@ECCV’18)
I Cross-domain consistency, CroDoCo (Chen+@CVPR’19)
I Domain-invariant structure extraction, DISE (Chang+@CVPR’19)
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Multiple source classifier

I Sliced Wasserstein Discrepancy, SWD (Lee+@CVPR’17)
I Classifiers consensus maximization, MCD (Saito+@CVPR’18)
I Minimizing the cosine similarity, CLAN (Luo+@CVPR’19)
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Self-training learning

I Class-balanced self-training, CBST (Zou+@ECCV’18)
I Bidirectional learning, BDL (Li+@CVPR’19)
I Differential Treatment for Stuff and Things, SIM (Wang+@CVPR’20)
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Exploiting the prediction entropy/confidence

I Adversarial entropy minimization, AdvEnt (Vu+@CVPR’19)
I Progressive confidence based reweighting, SSF-DAN (Du+@ICCV’19)
I Maximum Squares Loss, MSL (Chen+@ICCV’19)
I Fourier Domain Adaptation, FDA (Yang+@CVPR’20)
I Intra-domain Adaptation, IntraDA, (Pan+@CVPR’20)
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Curriculum learning

I Using static object prior, CrossCity (Chen+@ICCV’17)
I Inferring first label distributions for image and landmark superpixels, CDA

(Zhang+@ICCV’17)
I Pyramid curriculum domain adaptation, PyCDA (Lian+@ICCV’19)
I Course-to-fine region expansion, PIT (Lv+@CVPR’20)
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Learning with Privileged Information

I Depth as auxiliary task, SPIGAN (Lee+@ICLR’19), DADA (Vu+@ICCV’19)
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Cross-Modal 2D-3D segmentation

I Joint 2D image and 3D point clouds segmentation xMUDA (Jaritz+@CVPR’20)
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Object detection

I Adapting Faster R-CNN, Chen+@CVPR’18, Zhu+@CVPR’19, Saito+@CVPR’19,
Xu+@CVPR’20

I Self-training, RoyChowdhury+@CVPR’19, Inoue+@CVPR’18, Kim+@ICCV’19

@2020 NAVER LABS. All rights reserved. 60



Other Visual Applications
Person Re-ID

I Wei+@CVPR’18, Liu+@CVPR’18, Zhong+@CVPR’18, Bak+@ECCV’18,
Song+@CVPR’19, Fu+@ICCV’19, QI+@ICCV’19, Zhai+@CVPR’20,
Luo+@CVPR’20

Pose/action recognition
I Yusuf+@BMVC’18, Perrett+@CVPR’19, Cao+@ICCV’19, Kuhnke+@ICCV’19,

Munro+@CVPR’20

Depth estimation
I Kundu+@CVPR’18, Atapour-Abarghouei+@CVPR’18, Zhao+@CVPR’20,

Chidlovskii+@TASK-CV’20

Low level image analyses
I Agresti+@CVPR’19, Lu+@CVPR’19, Lin+@CVPR’19, Yan+@CVPR’20,

Usman+@ICCV’19

Control in robotics
I Yang+@ECCV’18, James+@CVPR’19, Wulfmeier+@IROS’17, Tobin+@IROS’17

3D/Visual localization
I Zhou+@ECCV’18, Larsson+@ICCV’19,Piao+@ICCV’19

Medical imaging
I Bermúdez-Chacón+@ISBI’18, Perone+@NEUROIMAGE’19, Dong+@CVPR’20
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