

clearspacetoday

Domain Adaptation for Visual Applications Part 1: Basic Concepts and Traditional Methods

Mathieu Salzmann EPFL-CVLab & ClearSpace

Outline

- Basic concepts
- Traditional domain adaptation
 - Metric learning
 - Subspace representations
 - Matching distributions

Basic Concepts

Standard Visual Recognition

Train a classifier on the training data and directly apply it to the test data

Source domain

Target domain

A classifier trained on one domain may perform poorly on another domain

Semi-supervised vs Unsupervised

• Semi-supervised: Some labeled target data, but not enough to train from scratch

Source data

Target data

Fully-labeled

A few labels

Semi-supervised vs Unsupervised

• Unsupervised: No labels for the target data

Source data

Target data

Fully-labeled

Single vs Multiple Source Domains

Source domain 1

Source domain 2

Target domain

Moving towards domain generalization

Domain Adaptation: Other Scenarios

Synthetic (source domain)

Real (target domain)

Domain Adaptation: Other Scenarios

Synthetic (source domain)

with facial landmarks

Real (target domain)

with facial landmarks

Domain Adaptation: Other Scenarios

Satellite 6D pose estimation

Synthetic (source)

Real (target)

Setup/Notation

- Each sample is represented by a feature vector:
 - In the traditional methods, e.g., bag of SURF features
 - More recently, features extracted by a deep backbone network

 $\mathbf{X}_{s} = \{\mathbf{x}_{s}^{i}\}_{i=1}^{n}$

 $\mathbf{X}_t = \{\mathbf{x}_t^j\}_{j=1}^m$

Label: $\{y_s^i\}_{i=1}^n$

Domain Shift

• The domain shift is defined as a difference in the distribution of the source and target samples

Domain Shift

• Typically, the literature focuses on the covariate shift case, where

 $p_t(x_t) \neq p_s(x_s)$

• But

$$p_t(y|x_t) = p_s(y|x_s)$$

• The goal of domain adaptation is then often expressed as that of finding a transformation T(.), such that

$$p_t(T(x_t)) = p_s(T(x_s))$$

Domain Shift

- Note that other types of shift have been studied. For example:
 - Long et al., ICCV 2013

 $p_t(y|x_t) \neq p_s(y|x_s)$ (concept shift)

- Gong et al., ICML 2016

$$p_t(y|T(x_t)) \neq p_s(y|T(x_s))$$

– Kouw & Loog, 2018

 $p_t(y) \neq p_s(y)$ (prior shift)

• In this part, I will nonetheless focus on the covariate shift problem

Traditional Domain Adaptation

Metric Learning for Domain Adaptation

• Saenko et al., Adapting Visual Category Models to New Domains, ECCV 2010

• Learning a distance:

$$d_W(\mathbf{x}^i_s,\mathbf{x}^j_t) = (\mathbf{x}^i_s - \mathbf{x}^j_t)^T W(\mathbf{x}^i_s - \mathbf{x}^j_t)$$

Metric Learning for Domain Adaptation

• Semi-supervised domain adaptation: Pairwise constraints based on labels

$$\begin{array}{rcl} d_W(\mathbf{x}^i_s,\mathbf{x}^j_t) &\leq & u \ \text{if} \ y^i = y^j \\ d_W(\mathbf{x}^i_s,\mathbf{x}^j_t) &\geq & l \ \text{if} \ y^i \neq y^j \end{array}$$

• Learning formulation:

$$\begin{array}{ll} \min_{\boldsymbol{W} \succeq \boldsymbol{0}} & \operatorname{tr}(\boldsymbol{W}) - \log \det \boldsymbol{W} \\ \text{s.t.} & d_{W}(\mathbf{x}_{s}^{i}, \mathbf{x}_{t}^{j}) \leq u \ \text{if} \ y^{i} = y^{j} \\ & d_{W}(\mathbf{x}_{s}^{i}, \mathbf{x}_{t}^{j}) \geq I \ \text{if} \ y^{i} \neq y^{j} \end{array}$$

- Davis et al., ICML 2007:
 - Regularizer invariant to scaling and rotation
 - Efficient update based on a single constraint at a time

Metric Learning: Asymmetric Transformations

- The previous approach assumes:
 - Same feature dimensions for both domains
 - SPD matrix W
- This corresponds to a symmetric transformation

• Kulis et al., CVPR 2011 handles the asymmetric case

Metric Learning: Asymmetric Transformations

• Rely on similarity instead of distance:

$$\operatorname{sim}_{W}(\mathbf{x}_{s}^{i},\mathbf{x}_{t}^{j}) = (\mathbf{x}_{s}^{i})^{T}W\mathbf{x}_{t}^{j}$$

• The constraints can then be replaced with regularizers of the form:

 $(\max(0, I - (\mathbf{x}_s^i)^T W \mathbf{x}_t^j))^2$

if the samples have the same label

 $(\max(0, (\mathbf{x}_s^i)^T W \mathbf{x}_t^j - u))^2$ otherwise

- Replace the logdet regularizer with $\frac{1}{2} \|W\|_F^2$
- The formulation can be kernelized

From Semi-supervised to Unsupervised DA

Source data

- The previous approaches require some labeled target samples
- The unsupervised scenario assumes no target labels are available

Target data

Subspace Representations

- To model the data in each domain, several works have proposed to rely on subspace representations
 - This allows one to consider the entire data in one domain as a single entity

- Subspaces lie on Grassmann manifolds
 - Notions of Riemannian geometry, such as geodesics can be exploited

Subspace Representations

- Gopalan et al., ICCV 2011
- Generating intermediate subspaces
 - Samples along the geodesic between the source and target subspaces

- Recognition
 - Project source and target samples on all subspaces
 - PLS on the resulting vector representation

Geodesic Flow Kernel

• Gong et al., CVPR 2012

- Instead of sampling, integrate over all subspaces
 - Projection over all subspaces generates infinite dimensional vector representations
- Inner product between two such vectors

$$\langle \boldsymbol{z}_i^\infty, \boldsymbol{z}_j^\infty
angle = \int_0^1 (\boldsymbol{\Phi}(t)^{\mathrm{T}} \boldsymbol{x}_i)^{\mathrm{T}} (\boldsymbol{\Phi}(t)^{\mathrm{T}} \boldsymbol{x}_j) \ dt = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{G} \boldsymbol{x}_j$$

Subspace Alignment

- Fernando et al., ICCV 2013
- Don't consider intermediate subspaces, align the source and target ones
- Solve

$$\mathbf{M}^* = \underset{\mathbf{M}}{\operatorname{argmin}} \|\mathbf{S}_{s}\mathbf{M} - \mathbf{S}_{t}\|_{F}^{2}$$

• Closed-form solution

$$\mathbf{M}^* = \mathbf{S}_s^T \mathbf{S}_t$$

Unsupervised DA: Matching Distributions

- While effective, subspace-based methods indirectly address the domain shift
 - Recall that it results from a distribution mismatch
- A popular DA approach therefore consists of aligning the distributions

Maximum Mean Discrepancy

- Compare the mean of two samples in Hilbert space
 - Gretton et al., JMLR 2012

$$D_{MMD}(X_s, X_t) = \left\| \frac{1}{n} \sum_{i=1}^n \phi(x_s^i) - \frac{1}{m} \sum_{j=1}^m \phi(x_t^j) \right\|_{\mathscr{H}}$$
$$= \left(\sum_{i,j=1}^n \frac{k(x_s^i, x_s^j)}{n^2} + \sum_{i,j=1}^m \frac{k(x_t^i, x_t^j)}{m^2} - 2 \sum_{i,j=1}^{n,m} \frac{k(x_s^i, x_t^j)}{nm} \right)^{\frac{1}{2}}$$

• Assign a weight to each source sample to make the distributions similar

• Gretton et al., JRSS 2012: Sample reweighting

$$\min_{\beta} \left\| \frac{1}{n} \sum_{i=1}^{n} \beta_{i} \phi(\mathbf{x}_{s}^{i}) - \frac{1}{m} \sum_{i=1}^{m} \phi(\mathbf{x}_{t}^{i}) \right\|^{2}$$
s.t.
$$\beta_{i} \in [0, B], \forall 1 \leq i \leq n$$

$$\left| \sum_{i=1}^{n} \beta_{i} - n \right| \leq n\epsilon$$

MMD

Bound on the weights

Encourage the weights to define a probability distribution

• Gong et al., ICML 2013: Sample selection

$$\begin{split} \min_{\boldsymbol{\alpha}} & \left\| \frac{1}{\sum_{i=1}^{n} \alpha_{i}} \sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}_{s}^{i}) - \frac{1}{m} \sum_{i=1}^{m} \phi(\mathbf{x}_{t}^{i}) \right\|^{2} \\ \text{s.t.} & \alpha_{i} \in \{0, 1\} , \ \forall \ 1 \leq i \leq n \\ & \frac{1}{\sum_{i=1}^{n} \alpha_{i}} \sum_{i=1}^{n} \alpha_{i} y_{c}^{i} = \frac{1}{n} \sum_{i=1}^{n} y_{c}^{i} , \ \forall 1 \leq c \leq C \end{split}$$

Binary weights

Keep the same proportion of sample in each class

• What happens if the original distributions are very different?

• Selecting/reweighting samples will not be sufficient to align the distributions

Transformation Learning

• Learn a mapping to a latent space where the distributions are similar

Transfer Component Analysis (TCA)

- Pan et al., TNN 2011
 - Motivation: Learn a nonlinear mapping that minimizes the MMD

• Would involve learning a kernel matrix, which is ill-constrained

TCA: Simplification

• Relies on a projection of the empirical kernel map to a latent space

TCA: Simplification

- Yields a new kernel matrix $\tilde{K} = KWW^T K$
- The MMD becomes

$$D_{MMD}^2(X_s, X_t) = Tr((KWW^TK)L)$$

• To better constrain the problem, regularize the data variance $ilde{m{\Sigma}}$

• Formulation

$$\min_{W} Tr(W^T KLKW) + \mu Tr(W^T W) \text{ s.t. } \tilde{\Sigma} = I_d$$

TCA Interpretation

- TCA compares the mean of each domain after projection to the latent space
- MMD not truly computed in Hilbert space

Domain Invariant Projection (DIP)

- Baktashmotlagh et al., ICCV 2013
 - Learn a latent representation such that the MMD is minimized
 - MMD truly makes use of the Hilbert space

Domain Invariant Projection (DIP)

• MMD:
$$D_{MMD}(W^T X_s, W^T X_t) = \left\| \frac{1}{n} \sum_{i=1}^n \phi(W^T x_s^i) - \frac{1}{m} \sum_{j=1}^m \phi(W^T x_t^j) \right\|_{\mathscr{H}}$$

- With a Gaussian kernel $D_{MMD}^{2}(W^{T}X_{s},W^{T}X_{t}) = \frac{1}{n^{2}}\sum_{i,j=1}^{n}\exp\left(-\frac{(x_{s}^{i}-x_{s}^{j})^{T}WW^{T}(x_{s}^{i}-x_{s}^{j})}{\sigma}\right)$ $+\frac{1}{m^{2}}\sum_{i,j=1}^{m}\exp\left(-\frac{(x_{t}^{i}-x_{t}^{j})^{T}WW^{T}(x_{t}^{i}-x_{t}^{j})}{\sigma}\right)$ $-\frac{2}{mn}\sum_{i,j=1}^{n,m}\exp\left(-\frac{(x_{s}^{i}-x_{t}^{j})^{T}WW^{T}(x_{s}^{i}-x_{t}^{j})}{\sigma}\right)$
- Formulation

۲

$$W^* = \underset{W}{\operatorname{argmin}} D^2_{MMD}(W^T X_s, W^T X_t)$$

s.t. $W^T W = I_d$,

Comparing Covariances

- Sun et al., AAAI 2016: CORAL
 - First de-correlate the source features
 - Then re-correlate them with the target correlation

- Mathematically: $\min_{A} \left\| A^{\top} C_{S} A C_{T} \right\|_{F}^{2}$
- Note that, as opposed to the means in the MMD, the covariance matrices are computed in the original space
 ³⁹

Other Distribution Distances

• f-divergences:

$$D_f(s||t) = \int f\left(\frac{s(x)}{t(x)}\right) t(x) dx$$

• In practice, the distributions can be estimated using KDE

• In particular, the KL-divergence:

$$KL(s||t) = \int s(x) \log \frac{s(x)}{t(x)} dx$$

Hellinger Distance

$$D_H^2(s||t) = \int \left(\sqrt{s(x)} - \sqrt{t(x)}\right)^2 dx$$

- Related to the geodesic distance on the statistical manifold
 - The length of a curve is the same under both distances

Statistically Invariant Embedding (SIE)

- Baktashmotlagh et al., CVPR 2014
 - Hellinger distance instead of MMD
 - Applied to sample selection and transformation learning

Empirical Evaluation: Dataset

- Introduced by Saenko et al., ECCV 2010
- Complemented with Caltech by Gong et al., CVPR 2012
- 4 domains, 10 classes
- BoW of SURF features
- Decaf features

Empirical Evaluation: Results (SURF)

Method	$D \rightarrow A$	$D \rightarrow C$	$D \to W$	$W \to A$	$W \rightarrow C$	$W \rightarrow D$	Avg.
NO ADAPT-SVM	33.6 ± 1.7	31.1 ± 0.9	75.2 ± 2.6	36.9 ± 1.2	33.4 ± 1.1	80.2 ± 2.5	44
SVMA (Duan et al., 2012)	33.43 ± 1.24	31.40 ± 0.87	74.44 ± 2.21	36.63 ± 1.08	33.52 ± 0.77	74.97 ± 2.65	41.1
DAM (Duan et al., 2012)	33.50 ± 1.29	31.52 ± 0.88	74.68 ± 2.14	34.73 ± 1.14	31.18 ± 1.25	68.34 ± 3.16	40.2
GFK (Gong et al., 2012)	37.7 ± 1.8	33.3 ± 1.3	79.9 ± 2.8	41.5 ± 1.8	34.5 ± 0.9	76.7 ± 1.4	44.8
TCA (Pan et al., 2011)	39.6 ± 1.2	34 ± 1.1	80.4 ± 2.6	40.2 ± 1.1	33.7 ± 1.1	77.5 ± 2.5	42.8
SA (Fernando et al., 2013)	41.1 ± 1.6	35.4 ± 1.8	84.4 ± 2.4	38.2 ± 1.4	33.3 ± 1.2	83.3 ± 1.6	48.7
KMM (Huang et al., 2006)	38 ± 1.8	34.3 ± 1.2	82.0 ± 1.7	39.0 ± 1.2	35.3 ± 1.0	86.8 ± 2.0	47.7
DME-MMD	40.5 ± 1	39 ± 0.5	86.7 ± 1.2	42.5 ± 1.5	37 ± 0.9	86.4 ± 1.8	50.9
DME-MMD (Poly)	40.8 ± 0.9	39.1 ± 0.6	87.1 ± 1.0	41.3 ± 1.3	36.8 ± 0.9	85.8 ± 2.2	50.4
DME-H	39.1 ± 0.6	38.9 ± 0.4	88.6 ± 1.0	44.1 ± 0.8	39.9 ± 0.7	89.3 ± 0.5	52.3

Empirical Evaluation: Results

Empirical Evaluation: Results

Empirical Evaluation: Results

Empirical Evaluation: Results (Decaf)

Method	$D \rightarrow A$	$D \to C$	$D \to W$	$W \to A$	$W \to C$	$W \rightarrow D$	Avg.
NO ADAPT-SVM	79.2 ± 2.3	73.4 ± 2.0	95.6 ± 1.1	75.3 ± 1.5	69.5 ± 1.1	99.4 ± 0.6	81.9
SVMA (Duan et al., 2012)	85.37	78.14	96.71	74.36	70.58	96.6	82.7
DAM (Duan et al., 2012)	87.88	81.27	96.31	76.6	74.32	93.8	84.2
GFK (Gong et al., 2012)	84.2 ± 2.3	77.5 ± 2.0	96.4 ± 1.1	85.4 ± 1.7	77.1 ± 0.5	99.5 ± 0.3	86.8
TCA (Pan et al., 2011)	84.1 ± 1.6	77.7 ± 1.9	95.9 ± 0.8	83.8 ± 1.0	76.5 ± 0.9	98.6 ± 0.9	85.6
SA (Fernando et al., 2013)	90.1 ± 0.9	83.9 ± 1.6	96.8 ± 1.6	85.0 ± 3.3	78.7 ± 2.8	99.3 ± 0.7	86.5
KMM (Huang et al., 2006)	84.3 ± 2.4	77.4 ± 1.1	96.2 ± 1.8	75.5 ± 3.2	72.8 ± 1.9	97.9 ± 0.9	83.6
DME-MMD	82.9 ± 2.9	77.5 ± 2.7	96.4 ± 1.2	82.1 ± 1.9	78.6 ± 1.4	98.8 ± 0.3	86.2
DME-H	84.5 ± 2.5	79.6 ± 1.8	97 ± 0.9	83.9 ± 1.1	77.9 ± 1.4	99.7 ± 0.4	86.7

MMD-based Network

• Deep Domain Confusion: Tzeng et al., 2014

$$\mathcal{L} = \mathcal{L}_C(X_L, y) + \lambda \text{MMD}^2(X_S, X_T)$$

Domain Adversarial Networks

- Ganin & Lempitsky, ICML 2015; Ajakan et al., 2014
 - With domain-invariant features, classifying from which domain a sample comes should be difficult

• Shown to optimize a H-divergence between the source and target data

Deep Learning for Domain Adaptation (Office 31)

	Method	$A \rightarrow D$	$D \rightarrow W$	$W \rightarrow D$
Deep	DAN (Ganin)	67.3	94.0	93.7
	DDC (Tzeng)	59.4	92.5	91.7
Shallow	DIP	53.2	86.3	93.7
	SIE	51.6	87.4	92.9

Summary

- Learning transformations to match distributions
 - Well-motivated and intuitive
 - Effective in practice
- Subspace-based representations are also powerful
 - Subspace alignment is simple and effective

- End-to-end learning has surpassed the traditional approach
 - Many ideas used in the past can be and have been translated to deep networks